Una vista parcial de la fuente de los fotones únicos que serán almacenados en la memoria cuántica, con la finalidad de generar el entrelazamiento.

 

El entrelazamiento cuántico es la interrelación de los estados cuánticos de varias partículas, independientemente de la distancia entre ellas. Y para los científicos es relativamente fácil entrelazar dos partículas: dividir un fotón, por ejemplo, genera dos fotones con propiedades y comportamientos idénticos. Según las predicciones de la mecánica cuántica, un gran número de átomos pueden entrelazarse incluso en una estructura macroscópica, pero la evidencia experimental había mostrado como máximo el entrelazamiento de 2.900 átomos.

Ahora, científicos de la Universidad de Ginebra (UNIGE, Suiza) han publicado en Nature Communications los resultados del rediseño de su procesamiento de datos, con lo que han conseguido mostrar evidencia del entrelazamiento de 16 millones de átomos en un cristal de un centímetro.                                                                                                         

Cómo se produce un entrelazamiento. Las leyes de la física cuántica permiten detectar de inmediato si las señales emitidas son interceptadas por un tercero. Esta propiedad es crucial para la protección de datos, especialmente en la industria del cifrado, que puede garantizar que los clientes estén al tanto de cualquier interceptación de sus mensajes. Estas señales también deben poder viajar largas distancias utilizando dispositivos de retransmisión especiales conocidos como repetidores cuánticos: cristales enriquecidos con átomos de metales raros entrelazados y unidos por una relación cuántica muy fuerte.

Cuando un fotón penetra en este pequeño bloque de cristal enriquecido con átomos de tierras raras y se enfría a 270 grados bajo cero, es decir, apenas tres grados por encima del cero absoluto, se crea un entrelazamiento entre los miles de millones de átomos que atraviesa. Esto está predicho explícitamente por la teoría, y los científicos aseguran que es exactamente lo que sucede cuando el cristal cumple su función y reemite, sin leer la información que recibe, en la forma de un solo fotón.                                                     

La revolución cuántica. Los autores examinaron las características de la luz reemitida por el cristal y los datos mostraban el entrelazamiento de 16 millones de átomos cuando las observaciones anteriores tenían un límite de unos pocos miles. En un trabajo paralelo, los científicos de la Universidad de Calgary (Canadá), hicieron lo mismo con muchos grandes grupos de átomos. Este fenómeno es un requisito previo para la revolución cuántica que vendrá de la mano de los ordenadores cuánticos.

En un trabajo publicado en septiembre en Physical Review Letters, físicos británicos demostraron que el entrelazamiento no es una propiedad especial de ningún sistema cuántico concreto, sino que es una parte integral de todas las posibles teorías físicas que tienen un límite clásico. La existencia de un límite clásico en cualquier teoría moderna le impone ciertas limitaciones. Por un lado, la teoría clásica es necesaria para determinar la estructura y los postulados básicos, y por otro lado la teoría clásica es, bajo ciertas condiciones, un caso limitante. El entrelazamiento cuántico, a pesar de toda su inconsistencia desde el punto de vista de la física clásica, se puede ver incluso a simple vista, y para los sistemas cuánticos es una propiedad muy útil y puede usarse, por ejemplo, para la teleportación cuántica o la protección de datos cuánticos.

 

 

 

 

 

El equipo de redacción de Prensa21 trabaja permanentemente para entregarle la información que a usted le interesa.

SHARE